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Abstract
The equilibrium geometries, formation energies, band structures, densities of
states and charge densities of ordered titanium carbide phases of composition
Ti2C—cubic Fd3m-Ti2C and trigonal R3̄m-Ti2C—were calculated self-
consistently by means of the full-potential linearized augmented-plane-wave
method. The trigonal phase was found to be more stable than the cubic phase
by 11.6 kJ/(mole of atoms) because it enables more efficient d–d bonding
between Ti d states. The cubic phase is stabilized by the relaxation of the
Ti atoms next to the vacancies towards their nearest-neighbour C atoms. In
agreement with experiment, the maximum of the stabilizing relaxation energy
(2.8 kJ/(mole of atoms)) is found for a relaxation of 0.04 Å. The formation
energies are in good agreement with the available experimental values for TiC
andFd3m-Ti2C. Calculations were also performed for two tetragonal phases of
composition Ti2X found experimentally for the nitride but not for the carbide.
All calculated ordered Ti2C phases are found to be stable against segregation
into TiC and metallic Ti.

1. Introduction

Owing to their hardness, high melting points and high stability, transition metal carbides and
nitrides are widely used in industry. Because of their particular electronic structure they show
an interesting combination of ionic, covalent and metallic properties. Non-stoichiometry is
very common in these compounds. Their physical properties are significantly influenced by
the amount of structural vacancies.

One of the most interesting systems is the titanium–carbon system. Titanium carbide
crystallizes in the cubic sodium chloride (B1) structure within a broad homogeneity range
(δ-TiCx , 0.48 � x � 1.0 [1, 2]) and with statistically distributed substitutional vacancies
on the carbon sublattice sites. For a certain range of composition, the δ-phase seems to be
thermodynamically stable solely at high temperatures. It can, however, be obtained quite easily
as a metastable phase at lower temperatures by quenching the samples [3, 4].
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At lower temperatures, ordered defect structures showing long-range order of the vacancies
are the thermodynamically stable phases. They can, however, only be obtained after a special
thermal treatment of the samples such as prolonged annealing [5, 6]. Because of the high
migration enthalpy of the C vacancies (∼4 eV) [6] their formation is kinetically hindered at
lower temperatures.

On the other hand, even in disordered TiCx it can be concluded, e.g. from elastic diffuse
neutron-scattering measurements [7–9], that the non-metal vacancies show some short-range
order.

Long-range order in titanium carbide samples is, for instance, detected by additional
superlattice reflections in x-ray and neutron diffraction [10], by different values for ordered
and disordered phases of the electrical resistance [11–13], the specific heat [11] and other
physical quantities and by characteristic jumps if one plots these quantities against the molar
fraction x of the non-metal atoms [14].

One way of investigating theoretically the influence of vacancy ordering on the physical
properties of TiCx consists in the calculation of the electronic structure and energetics of the
various ordered phases. Such calculations have already been performed; for example,

(a) by the recursion method with a parametrized tight-binding Hamiltonian for various
possible ordered vacancy superstructures of transition metal carbides and nitrides [15];

(b) by the self-consistent tight-binding linear muffin-tin-orbital (TB-LMTO) method for
ordered fcc TiC0.25, TiC0.5 and TiC0.75 [16];

(c) by the self-consistent augmented-plane-wave (APW) method and the linearized muffin-tin
atomic-sphere-approximation (LMTO-ASA) method for ordered fcc TiC0.75 [17, 18];

(d) by a tight-binding parametrization for TiCx (0.7 � x � 1) [19];

(e) very recently, by a combination of full-potential linear muffin-tin-orbital (FP-LMTO)
and pseudopotential VASP calculations for various ordered TiCx phases of cubic
symmetry (TiC0.25, TiC0.5, TiC0.625, TiC0.75, TiC0.875, TiC0.9375, TiC), including a thorough
consideration of relaxation effects [20].

For the related Ti–N system, ab initio self-consistent full-potential linearized augmented-
plane-wave (FLAPW) band-structure calculations have been performed for experimentally
observed ordered titanium nitride phases of composition Ti2N with tetragonal symmetry:
metastable δ′-Ti2N (whose structure can be derived from the B1 structure by locating the
vacancies at fixed non-metal lattice sites and relaxing the c/a ratio and the positions of the Ti
atoms) and stable ε-Ti2N crystallizing in the antirutile structure [21, 22].

In a preceding paper [22], the band structure of fictitious δ′-Ti2C has been calculated
as well. The comparison of the electron densities and the densities of states of δ′-Ti2N and
δ′-Ti2C led to a qualitative explanation for the existence of the former and the non-existence
of the latter phase in the respective phase diagrams. However, for the carbide the geometry
optimization has not been performed.

It seemed of some interest to continue these investigations by performing band-structure
calculations also for the experimentally found ordered cubic and trigonal Ti2C phases.
Moreover, the experimental evidence for the stabilities of these phases does not seem to have
been conclusive until now and therefore additional theoretical calculations not restricted to
cubic structures, such as [20], can be particularly helpful.

From TiCx samples in the composition range 0.5 � x � 0.7, two different ordered defect
structures of the ideal composition Ti2C have been identified experimentally: cubic Ti2C of
space group symmetry Fd3m (No 227) [10] (figure 1) and trigonal Ti2C of space group R3̄m
(No 166) [23] (figure 2).
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Figure 1. The cubic unit cell of Fd3m-Ti2C drawn in a B1(NaCl)-type lattice. Full circles: C
atoms; empty circles: vacancies. The Ti atoms are not shown.

Figure 2. One third of a hexagonal unit cell of R3̄m-Ti2C. Full circles: C atoms; empty circles:
Ti atoms.

Neglecting the trigonal distortion, the two structures have identical atomic distances and
atomic pair correlations and, although they differ in their atomic arrangement [24, 25], they
cannot be distinguished by means of x-ray or neutron powder diffraction.

In both structures, the C atoms and also the vacancies are surrounded by (distorted) Ti
octahedra. As in short-range ordered TiCx , the vacancies tend to avoid second-nearest C
sublattice sites. The three nearest C neighbours of the Ti atoms are found in +x-, +y- and
+z-directions. The structures can also be described by different stackings of octahedra centred
at Ti atoms and consisting of C atoms and of C vacancies [6, 8].

The lattice parameter of cubic Fd3m-Ti2C (Ti2C (I)), with experimental values of 8.6 Å
[10] and 8.54 Å [26], is twice as large as the lattice parameter of the B1 structure. The
rhombohedral unit cell contains 12 atoms (four formula units of Ti2C).

InFd3m-Ti2C, the filling of the C(111) planes alternates from 1/4 to 3/4 and the Ti atoms
adjoining the vacancies are supposed to be shifted towards the C atoms by 0.04 Å [10].
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For R3̄m-Ti2C, the C(111) planes are alternating between fully occupied or entirely
unoccupied. The trigonal unit cell contains three atoms (one formula unit of Ti2C). For
this structure, however, it is also possible to construct a hexagonal unit cell which is three
times as large accommodating three formula units of Ti2C, i.e. nine atoms. Hexagonal lattice
parameters of ahex = 3.06 Å and chex = 14.890 Å were found for TiC0.67 at 1003 K [9].

As regards the relative stabilities of these two structures, experimental results are not
unambiguous. For a carbon content of 0.6 � x � 0.67, de Novion [9] found the trigonal R3̄m
phase to be the stable ordered phase above 973 K and the cubic Fd3m phase a metastable,
intermediately formed superstructure. For x < 0.6, at first cubic Fd3m-Ti2C was formed
from disordered TiCx which transformed very slowly into R3̄m-Ti2C when the sample was
isothermally annealed at 1003 K for more than one month [9]. Probably for kinetic reasons,
the trigonal phase has not been obtained at lower temperatures.

Using high-resolution electron microscopy and the micro-diffraction technique,
Tsurekawa and Yoshinaga [27] found a R3̄m superlattice for samples of TiC0.59 annealed
at 970 K for 140 h. Also Em and Tashmetov [28] found the trigonal phase to be stable below,
and the cubic phase to be stable above 1053 K for samples of composition TiC0.632.

According to investigations by Lipatnikov et al [14], vacancy ordering in the temperature
range of 300–1100 K gave cubic Fd3m-Ti2C for a C content of 0.52 � x � 0.55 and trigonal
R3̄m-Ti2C for a C content of 0.56 � x � 0.58. For a C content of 0.62 � x � 0.68, they
identified a third ordered superstructure of composition Ti3C2 and with rhombic symmetry,
which was first shown to exist by Khaenko et al [29].

Contrary to the case for the Ti–N system, no tetragonal phase of composition Ti2C has
been found in the temperature range investigated at and above 300 K. Gusev and Rempel [2]
postulated a transition temperature below 300 K for a possible tetragonal δ′-Ti2C. Altogether,
no experimental information exists so far about the relative phase stabilities in the Ti–C system
at low temperatures. Also, ordering of vacancies seems to be by no means perfect in the so-
called ordered phases and impurities such as O or additional C atoms in a sample could stabilize
or destabilize a particular phase.

When comparing the results of first-principles band-structure calculations with
experimental findings it must always be taken into account that the former refer to a temperature
of 0 K and are based on supercells with perfect stoichiometric composition and perfect long-
range order of the vacancies but without any impurities.

2. Computational aspects

In the present ab initio study, band-structure calculations within the local-density
approximation (LDA) of density-functional theory were performed by means of the FLAPW
method [30] for cubic Fd3m-Ti2C, for trigonal R3̄m-Ti2C and also for hypothetical tetragonal
δ′-Ti2C, ε-Ti2C and P4/mmm-Ti2C. The core states, including the Ti 3s and 3p states,
were regarded as atomic-like and treated fully relativistically whereas the valence states were
treated scalar relativistically. The wavefunctions were expanded into ≈140 augmented plane
waves/atom with wavevectors up to |�k| = 4.6. Inside the muffin-tin spheres around the atomic
sites the potentials and the charge densities were expanded in spherical harmonics up to l = 8.
In the interstitial region the corresponding expansions were performed in Fourier series up to
| �K| = 10.00. The muffin-tin radii were taken as 1.7322 au for C and 1.961 au for Ti.

A Hedin–Lundqvist exchange–correlation potential [31] was employed.
For the �k-integration the tetrahedron method [32] was used throughout. For the solutions

of the Schrödinger equation 3600 �k-points in the Brillouin zone (BZ) for both cubic and
trigonal Ti2C were taken. This is equivalent to 300 �k-points in the irreducible wedge of the
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BZ for R3̄m-Ti2C and to 75 �k-points for Fd3m-Ti2C taking into account that the volume of
the irreducible wedge of the BZ is 1/16 (1/48) of the entire BZ volume for the trigonal (cubic)
structure. A mesh of 75 non-equivalent �k-points was employed for the tetragonal structures.

The influence of the number of �k-points on the results is rather small: increasing it from
75 to 300 for R3̄m-Ti2C changes the total energy only by 1 mRyd/formula unit. Thus, unlike
in the FLAPW band-structure calculation for δ′-Ti2N and ε-Ti2N [22], no extrapolation to an
infinite number of �k-points was undertaken.

An augmentation of the number of basis function lowers the total energy. However, for
very large and thus overcomplete basis sets, numerical problems are to be expected. The chosen
optimized cut-off value of |�kmax | = 4.6 was already tested successfully and applied in [22]
and guarantees a sufficient convergence of the total energies (changes of <1 mRyd/atom if
|�kmax | is further increased).

The non-spherical terms of the Hamiltonian matrix were calculated for the full
Hamiltonian. Compared to a calculation using the second variation method, the total energies
are lowered by 2 mRyd/formula unit of Ti2C at most and the equilibrium geometries slightly
shifted (<0.5% deviation of the lattice parameters). No visible changes are found for the band
structures, densities of states and charge densities.

The band-structure calculations for Fd3m-Ti2C were performed both with and without
empty spheres at the vacancy sites. This does not change the results significantly but, in the
former case, allows for the localization of possible vacancy states as defined in [17].

In order to determine the optimized geometries and bulk moduli for all phases, the first
step consisted in finding the minimum of the total energy with respect to the unit-cell volume
by means of a Birch fit [33] where all other geometric parameters (c/a ratio for the trigonal and
tetragonal phases, possible positional parameters and relaxations of the Ti atoms for the cubic
Fd3m phase and tetragonal δ′-phase) were fixed. In a second step, these other parameters
were optimized at fixed equilibrium volume. Finally, the volume was once more varied with
the fixed optimized values for these parameters.

3. Energetics

Figure 3 shows the total energies/formula unit as functions of the volume for Fd3m-Ti2C
(curve (b)) and R3̄m-Ti2C (curve (c)), whereby the other geometric parameters (c/a ratio for
R3̄m-Ti2C, relaxation of the Ti atoms for Fd3m-Ti2C) are fixed at the experimental values.

The equilibrium volume/formula unit of Fd3m-Ti2C was found to be very near the
experimental volume of 268.3 au3 [10]. For R3̄m-Ti2C it lies 5.7% below the experimental
value of 272.3 au3 [9] and this volume contraction lowers the total energy of R3̄m-Ti2C by
about 6 mRyd/formula unit. One must, however, take into account that the experimental value
was determined for a carbide of composition TiC0.67 at 1003 K [9], whereas the calculation
was performed for perfectly ordered Ti2C at 0 K.

Once the equilibrium volumes are determined, the influence on the total energy of the
other geometric parameters can be studied.

Figure 4 shows the variation of the total energy of Fd3m-Ti2C at the equilibrium volume
with the relaxation of the Ti atoms next to the C vacancies. Zero relaxation here means that
the Ti atoms are situated at the ideal positions of the fcc lattice. The outward relaxation of
the Ti atoms from these positions towards their nearest C neighbours reduces the Ti–C bond
length and lowers the total energy by 7 mRyd/formula unit. The theoretical value of 0.038 Å
for the relaxation at the energy minimum is in excellent agreement with the experimental value
of 0.04 Å [10].
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Figure 3. The volume dependence of the total energies/formula unit ofFd3m-Ti2C andR3̄m-Ti2C:
curve (a) unrelaxedFd3m-Ti2C; curve (b) relaxedFd3m-Ti2C; curve (c)R3̄m-Ti2C, experimental
c/a ratio; curve (d) R3̄m-Ti2C, optimized c/a ratio.
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Figure 4. Total energy/formula unit of Fd3m-Ti2C at equilibrium volume as function of the
relaxation of the Ti atoms from the ideal fcc positions (in units of a thousandth of a lattice parameter).

Thus, curve (b) in figure 3 for the total energy of Fd3m-Ti2C conforms already to the
Birch fit with optimized equilibrium relaxation of the Ti atoms.

In order to take the influence of the Ti-atom relaxation on the total energy properly into
account, a Birch fit was also performed for fictitious Fd3m-Ti2C with unrelaxed Ti atoms at
the fcc lattice positions (curve (a) in figure 3).

Relaxation was shown to increase the equilibrium volume by 2.3% and the relaxation
energy, now defined as difference between the total-energy minima with and without relaxation
of the Ti atoms, was determined as 6.2 mRyd/formula unit (2.1 mRyd/atom or 2.8 kJ/(mole
of atoms)).
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Figure 5. Total energy of R3̄m-Ti2C at equilibrium volume as a function of the c/a ratio.

Other experimental values for the outward relaxation of the Ti atoms bordering the
vacancies in substoichiometric TiCx are of the same order of magnitude: 0.03 Å for short-range
ordered TiC0.76 [34], 0.05 Å for TiC0.64 and TiC0.76 [35], 0.07 Å for ordered TiC0.6 [36].

Previous calculations also found an outward relaxation of the Ti atoms but with slightly
higher values. The FP-LMTO calculation [20] for the 16-atom supercell describing ordered
Ti2C and corresponding to the Fd3m structure gave a Ti relaxation of 0.08 Å with a relaxation
energy of 3 mRyd/atom whereby the equilibrium volume of the cell with relaxed Ti atoms is
increased by 3% compared to the cell with unrelaxed Ti atoms. Cluster CNDO/2 calculations
for an isolated C vacancy in TiC found a Ti relaxation of 0.107 Å [37] and a tight-binding
parametrization led to a value of 0.1 Å for TiCx (0.7 � x � 1) [19].

For R3̄m-Ti2C, the experimental positions of the Ti atoms are almost identical with their
equilibrium positions, but a tetragonal distortion changing the c/a ratio can lower the total
energy quite significantly. Figure 5 shows the variation of the total energy of R3̄m-Ti2C at
fixed equilibrium volume with the c/a ratio. The energy minimum corresponding to a lowering
of the total energy by 4.4 mRyd/formula unit was found for a c/a ratio which is 5% smaller
compared to the experimental value measured for TiC0.67 at 1003 K [9]. Therefore, a second
volume minimization with the smaller c/a ratio was performed forR3̄m-Ti2C and the resulting
Birch fit is shown as curve (d) in figure 3. The trigonal phase with the optimized c/a ratio
is more stable by 26.5 mRyd/formula unit (11.6 kJ/(mole of atoms)) than the (relaxed) cubic
Fd3m phase.

For titanium nitride of composition TiN0.5 two ordered phases of tetragonal symmetry
exist, namely δ′-Ti2N (space group I41/amd) [38] and ε-Ti2C (space group P42/mnm;
antirutile structure) [39]. The δ′-Ti2N phase is metastable and transforms upon quenching
to thermodynamically stable ε-Ti2N. Its structure can be derived from the B1 structure by
assuming a particular ordered arrangement of vacancies whereby each Ti atom is surrounded
by three nearest non-metal neighbours. Unlike in the Fd3m structure of Ti2C these are,
however, positioned in the +x-, −x- and z-directions. Therefore, relaxation of the Ti atoms
is only possible in the z-direction. A detailed description of these structures can be found
in [22], where the band structures and electron densities of δ′-Ti2N and of fictitious δ′-Ti2C
have already been compared.
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Figure 6. The volume dependence of the total energies/formula unit of δ′-Ti2C and of ε-Ti2C.
Curve (a): unrelaxed δ′-Ti2C with c/a = 2; curve (b): relaxed δ′-Ti2C with c/a = 2; curve (c):
relaxed δ′-Ti2C with the optimized c/a ratio of 2.05; curve (d): ε-Ti2C with the optimized c/a

ratio.

The present study contains also a calculation of the energetics and equilibrium geometries
of both fictitious δ′-Ti2C and ε-Ti2C which, probably for kinetic reasons [2], have not yet been
traced experimentally.

Figure 6 shows calculated Birch fits for these two fictitious tetragonal phases. Curve (a)
corresponds to ordered TiC0.5 with c/a = 2 and unrelaxed Ti atoms. If the Ti atoms are relaxed
at the equilibrium volume, an optimized relaxation value of 0.03 Å results. The Birch fit for
δ′-Ti2C with this relaxation value but still with c/a = 2 is shown as curve (b). Finally, curve
(c) refers to relaxed δ′-Ti2C with the optimized c/a ratio of 2.05. Curve (d) shows the Birch
fit of ε-Ti2C with the optimized c/a ratio.

For δ′-Ti2C with c/a = 2 almost the same value of the relaxation energy as for Fd3m-
Ti2C—namely 6.2 mRyd/formula unit (2.1 mRyd/atom, 2.8 kJ/(mole of atoms))—is found,
which can be compared to the higher value of 5.1 kJ/(mole of atoms) for the relaxation energy
of δ′-Ti2N with c/a = 2 [22]. The energy gain by a tetragonal distortion changing the c/a ratio
is for the carbide with 0.3 mRyd/atom much smaller than the value of 1.9 mRyd/atom for the
nitride. Relaxation and tetragonal distortion stabilize δ′-Ti2N by 5.3 mRyd/atom (7 kJ/(mole
of atoms)) [22] and δ′-Ti2C by only 2.4 mRyd/atom (3.2 kJ/(mole of atoms)). The energy
of transformation of the δ′-phase to the ε-phase amounts to 3.4 mRyd/atom (4.5 kJ/(mole of
atoms)) for the carbide and to 2.4 mRyd/atom (3.1 kJ/(mole of atoms)) for the nitride [22].

Although neither tetragonal phases has yet been found experimentally, the present
calculation shows them to be more stable than Fd3m-Ti2C and, in the case of ε-Ti2C, even as
stable as trigonal R3̄m-Ti2C.

However, these results reflect only the relative thermodynamic stabilities at 0 K for
the ideal composition of TiC0.5 (and, in the case of Fd3m-Ti2C and of δ′-Ti2C, for
perfectly ordered vacancies). Neither entropic contributions to the Gibbs energies at non-zero
temperatures nor the influence of possible remaining disorder and of deviations from the exact
stoichiometric composition are taken into account.

Also, a high value of the free activation energy for the phase transition excludes the
formation of a phase which is only stable at low temperatures (as was indeed postulated for
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Figure 7. The volume dependence of the bulk moduli of (a) R3̄m-Ti2C and (b) Fd3m-Ti2C. The
bulk moduli at the equilibrium volume are labelled.

δ′-Ti2C [2]). In short-range ordered fcc TiCx , the C vacancies avoid second-nearest C sublattice
sites [9]. Therefore, the formation of the δ′-structure, which also comprises C vacancies at
second-nearest C sublattice sites was found to be unlikely too. The Fd3m structure with
an arrangement of vacancies compatible with the preferred vacancy sites found for short-
range ordered TiCx can be expected to be more easily formed. From our calculation, it
should transform to thermodynamically much more stable R3̄m-Ti2C after trigonal distortion.
However, experimental evidence suggests that this transformation will only take place if the
temperature is high enough to surmount the activation energy for the transformation.

The calculated experimental and calculated equilibrium geometries for all phases together
with the corresponding formation energies per atom and the bulk moduli B0 at the equilibrium
geometry can be found in table 1. Where available the theoretical FP-LMTO values of [20]
are also given. Also included are the formation energies for the segregated phase (TiC and
metallic Ti) and for stoichiometric TiC.

The formation energies per atom (for 0 K) were calculated from

Eform = E(TimCn) − mE(Tihcp) − nE(Cgraphite)

n + m
. (1)

They agree within 10% with the values of [20]. All ordered structures of composition Ti2C
were found to be less stable than stoichiometric TiC but all are stable against segregation into
TiC and metallic Ti.

Experimentally, the formation energy �0H of TiC at room temperature was found as
92.1 kJ/(mole of atoms) [41] compared to our value of 93.1 kJ/(mole of atoms) at 0 K.
The experimental estimate for �0H of Fd3m-Ti2C at room temperature lies at 64 kJ/(mole
of atoms) [42] compared to our values of 66.7 kJ/(mole of atoms) for unrelaxed and of
69.4 kJ/(mole of atoms) for relaxed Fd3m-Ti2C.

The bulk moduli of the different Ti2C phases were determined from the Birch fits. They
agree well with the calculated value of 204 GPa for ordered Ti2C from [20] and, as expected,
lie below the experimental value of 242 GPa for TiC0.91 [43]. In accordance with a comparable
FLAPW calculation [44], the bulk moduli decrease with increasing volume (figure 7).
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Table 1. Experimental and equilibrium lattice parameters (Å), formation energies per atom (mRyd)
and bulk moduli B0 (GPa) at the equilibrium geometry.

Phase aeq aexp ceq cexp Eform B0

Fd3m-Ti2 8.49 — — — −50.8 208
unrelaxed 8.41 [20] −46.7 [20] 213 [20]

Fd3m-Ti2C 8.55 8.60 [10] — — −52.9 207
relaxed 8.50 [20] 8.58 [26] −49.7 [20] 204 [20]

R3̄m-Ti2C 3.05 3.06 [9] 14.13 14.91 [9] −61.7 211

‘δ′-Ti2C’, 4.25 — 8.50 — −56.0 212
c/a = 2, unrelaxed

‘δ′-Ti2C’, 4.28 — 8.56 — −58.1 216
c/a = 2, relaxed

‘δ′-Ti2C’, 4.24 — 8.90 — −58.4 218
c/a = 2.05, relaxed

‘ε-Ti2C’ 5.03 — 3.09 — −61.7 213

TiC + Ti — — — — −47.3
(segregation)

B1-TiC 4.32 4.33 [40] — — −70.9 240
4.27 [20] −65.8 [20] 278 [20]

In this calculation a higher value of 286 GPa was found for the bulk modulus of
stoichiometric TiC and a decrease of the bulk moduli with an increasing number of vacancies
for VC and VC0.75 [44].

The features of the band structures, densities of states and electron densities which could
explain the results for the energetics of Ti2C will be discussed in the following sections.

4. Band structures and densities of states

Figure 8 shows, for Fd3m-Ti2C (four formula units of Ti2C) in its equilibrium geometry: (a)
the band structure in several symmetry directions of the BZ; (b) the density of states (DOS)
with and without relaxation of the Ti atoms; (c) the partial local Ti d and C s and p DOS; and
(d) the partial local vacancy s and p DOS.

The four lowest bands originating from atomic C s states are separated by a gap of 4.4 eV
from the higher bands formed from C p states. Interaction of C s and Ti d states is only
found for the two upper, almost degenerate C s bands which are extremely flat and lead to an
extremely high and narrow DOS peak at the top of the DOS ‘s band’ region from −11.2 eV to
−9.6 eV. The DOS for the C s bands with its three distinct maxima shows more structure than
is usually found for transition metal carbides or nitrides.

The next occupied energy states produce three distinct DOS peaks which are separated
from each other by narrow pseudogaps. Further analysis of the large components of the
partial local DOS, namely the C s and p and Ti d DOS (figure 8(c)), shows that the first two
peaks, designated as peaks p1 and p2 in figure 8(b), originate from interacting C p and Ti d
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Figure 8. Fd3m-Ti2C: (a) band structure in several symmetry directions; (b) DOS of Fd3m-Ti2C
with (full curve) and without (dashed curve) relaxation of the Ti atoms with respect to the fcc
lattice positions; (c) partial local Ti d (full curve), C p (dashed curve) and C s (dotted curve) DOS;
(d) partial local vacancy s (full curve) and p (dashed curve) DOS.

states whereas the third peak, designated as peak d1, can be associated with interacting Ti
d states. The Fermi level is situated in a minimum between two narrow peaks which have
predominantly Ti d character. Their energy distance is only 0.41 eV. Thus, any deviation from
the stoichiometric composition should destabilize this structure.

The dotted and dashed curves in figure 8(d) are the partial local vacancy s and p DOS
which have been determined by using empty spheres at the vacancy lattice sites. The partial
vacancy s DOS has its maximum at approximately 1 eV below the Fermi level in peak d1. It
can be ascribed to vacancy states which were found for substoichiometric titanium carbides
in earlier calculations [16, 17] and also in XPS spectra [16].

The band structure and DOS were also calculated for fictitious unrelaxed Fd3m-Ti2C
with the Ti atoms at the fcc lattice positions. In this case, the Fermi level is found in a DOS
maximum. Only if the Ti atoms are allowed to relax away from the vacancies is the Fermi
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level shifted to a DOS minimum generated by the split of this DOS peak into two subpeaks
(see figure 8(b)).

Relaxation also causes a sharper structure of the DOS and a shift of all bands towards lower
energies. This is true particularly for the states at the top of the peak p2. As a consequence,
the pseudogap between this peak and peak d1 is only found for Fd3m-Ti2C with relaxed Ti
atoms. Thus, from the effects of the Ti relaxation on the DOS, a qualitative explanation for its
stabilizing effect can be given in addition to the quantitative result of a total-energy reduction
by 2.1 mRyd/atom for a relaxation by 0.04 Å with respect to the ideal positions in the fcc
lattice.

The partial local DOS for Fd3m-Ti2C (see figure 8(c)) are in good agreement with the
FP-LMTO partial local DOS for Ti2C [20]. The 16-atom supercell for Ti2C [20] corresponds
to the unit cell of theFd3m structure. Relaxation effects on the partial local DOS also compare
well in the two ab initio calculations.

Agreement is not so good with the tight-binding LMTO DOS for Ti2C [16], probably
because it was calculated for a different ordered defect structure. In [16], the P4/mmm CuAu
structure is assumed for Ti2C. It is based on an fcc unit cell with alternating occupied or empty C
layers in the [001] direction. However, the formation of this structure is highly improbable for
a non-stoichiometric carbide because it would comprise an inhomogeneous distribution of the
vacancies where the Ti atoms are surrounded by four vacancies and only two C atoms as nearest
neighbours. From experiment, defect structures with a uniform distribution of vacancies are
energetically favoured for substoichiometric transition metal carbides and nitrides [4, 20].
Moreover, in the CuAu structure there is no possibility for the Ti atoms to relax.

Inspection of the calculated DOS shows that the Fermi level is situated in a DOS maximum.
The formation energy of this structure is calculated as −51.4 mRyd/atom and from table 1 its
value lies 1.5 mRyd/atom below the value for relaxed Fd3m-Ti2C.

Figure 9 shows for R3̄m-Ti2C in its equilibrium geometry: (a) the band structure; (b) the
DOS; and (c) the partial local Ti d and C s and p DOS. The band structure is plotted for
the hexagonal unit cell accommodating three formula units of Ti2C. The three overlapping
C s bands produce a single peak in the DOS. As for Fd3m-Ti2C, only the C s states at the
top of the peak interact with Ti d states. Again, two subpeaks p1 and p2 can be seen in the ‘p
band’ region of the DOS but a gap of 0.1 eV now separates the upper peak p2 from the lowest
occupied Ti ‘d band’ peak d1. The pseudogap between the peaks originating from occupied
and unoccupied Ti d states is much wider than for Fd3m-Ti2C, mainly because the small DOS
side-peak at 0.2 eV below EF for Fd3m-Ti2C is shifted, for R3̄m-Ti2C, to 0.6 eV below EF

(and to 1 eV below the lowest DOS peak of unoccupied Ti d states).
The dotted curve in figure 9(b) represents the DOS of R3̄m-Ti2C for the experimental

geometry. All peaks are shifted to higher energies. The bandwidth of the upper ‘p band’ peak
p2 has increased and thus only a narrow pseudogap persists between peaks p2 and d1.

Comparison of R3̄m- and Fd3m-Ti2C shows that the s–p gap of R3̄m-Ti2C is narrower
by 0.7 eV, shifting the bottom of peak p1 by 0.7 eV to lower energies. The larger separation of
the two ‘p band’ subpeaks p1 and p2 in this compound increases the total width of the ‘p band’
by 0.6 eV. However, a true gap of 0.1 eV between peaks p2 and d1 remains. Additionally, peak
d1 for occupied Ti 3d states narrows by 0.1 eV. These differences in the DOS can explain in a
qualitative way the higher thermodynamic stability of R3̄m-Ti2C.

The densities of states for the fictitious phases δ′-Ti2C and ε-Ti2C are presented in figure 10.
For both structures the Fermi level lies in the lowest peak of interacting Ti 3d states which

is separated only by a pseudogap from the ‘p band’ region of the DOS. The split of the DOS
in this region into two separate peaks is less pronounced, especially for δ′-Ti2C. The DOS of
disordered TiC0.5 which was calculated by means of the KKR-CPA method [45] shows the
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Figure 9. R3̄m-Ti2C: (a) band structure in several symmetry directions; (b) DOS for the
equilibrium (full curve) and the experimental (dashed curve) geometry; (c) partial local Ti d (full
curve), C s (dotted curve) and C p (dashed curve) DOS.

same features as the DOS of these two fictitious phases but the peaks are broadened by the
disorder.

In order to facilitate comparison, all relevant bandwidths and band gaps can be found in
table 2.

5. Electron densities

Contour plots of the valence electron density can help to visualize the nature of chemical
bonding in solids.

Figure 11 shows, for Fd3m-Ti2C in its equilibrium geometry, contour plots in the
(100) plane of: (a) the total valence electron density; (b) the d1, (c) the p1 and (d) the p2
subpeak valence electron density. The latter are found by addition of the valence-electron-
density contributions of all states with energies in the range of the respective DOS subpeaks
(figure 8(b)).
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Figure 10. DOS of fictitious δ′-Ti2C (full curve) and fictitious ε-Ti2C (dashed curve).

Table 2. Calculated bandwidths and band gaps (in eV) for several Ti2C phases. The band bottoms
are given with respect to EF .

Fd3m-Ti2C R3̄m-Ti2C δ′-Ti2C ε-Ti2C TiC0.5 [45]

C ‘s band’ width 1.6 1.7 2.2 1.9
Bottom of C ‘s band’ −11.2 −11.2 −11.3 −11.1
s–p gap 4.4 3.8 3.7 4.2 4.6
C ‘p band’ width 3.0 3.6 3.3 2.8 3.5
Bottom of C ‘p band’ −5.0 −5.7 −5.0 −4.6 −5.2
p–d gap — 0.1 — — —
Bottom of Ti ‘d band’ −2.0 −1.9 −1.7 −1.8 −1.6

The (100) contour plot of the total valence electron density (figure 11(a)) shows the
individual Ti2C units to be interconnected by strong Ti d–C p bonds, forming strings consisting
of a C layer with Ti layers above and below. The strings are separated from each other by an
empty layer originating from the vacancies on the C lattice sites. In the strings, the C atoms
are surrounded by octahedra of Ti atoms, which are slightly distorted because of the relaxation
of the Ti atoms.

How do the states in different energy regions contribute to the total valence electron
density? From figures 11(b)–(d), states in the energy region of the DOS subpeak p1 mainly
form C p–p σ -bonds (figure 11(c)) and those of peak p2 mainly form σ -bonds between C p
and Ti d states of t2g symmetry (figure 11(d)). The Ti eg-like states in the subpeak d1 just
below EF interact with each other and form Ti d–d bonds (figure 11(b)).

It is also enlightening to plot contributions of particular states to the valence electron
density.

Thus, figure 12 shows (100) contour plots of three states of Fd3m-Ti2C at �k = # which
represent different bonding types. The valence-electron-density contour plot for the state
with energy E = 0.186 Ryd situated in the subpeak p1 (figure 12(a)) shows a typical C p–p
σ -bond, the contour plot of the state with energy E = 0.3925 Ryd situated in the subband p2
(figure 12(b)) shows a bond between Ti t2g and C p states and, finally, in the contour plot of
the state with energy E = 0.5048 Ryd in band d1 just below EF (figure 12(c)), the Ti t2g-like
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Figure 11. Fd3m-Ti2C: contour plots in the (100) plane of (a) the total valence electron density,
(b) the d1, (c) the p1 and (d) the p2 subband valence electron densities. For the definition of the
subbands, see figure 8(b). The contour lines of figures 11, 13 and 14 are in units of e Å−3 on a
logarithmic mesh starting with a value of 0.0625.

states are seen to form mutual d–d bonds and also bonds across the C vacancy. Thus, this last
state can be described as a vacancy state in a real crystal and its contour plot can be compared
to those already published for compounds such as fictitious TiC0.75 [17], δ′-Ti2N [21] and
fictitious TiO0.75 [46].

Figure 13 shows the total valence electron density of R3̄m-Ti2C at the equilibrium
geometry. Based on the hexagonal unit cell, contour plots in three different planes were
calculated: in the (100) plane (figure 13(a)); in the (001) plane with z = 0 (C layer)
(figure 13(c)); and in the (001) plane with z = 2.23 (Ti layer) (figure 13(d)). Figure 13(b)
shows the contour plot in the (100) plane for the geometry with the equilibrium volume but
the experimental c/a ratio.

In the (100) contour plots (figures 13(a) and (b)), the Ti2C units are seen to form a layer
structure with three layers of Ti, C and Ti atoms, which are separated by an empty layer from
the next Ti–C–Ti layer sequence. The individual Ti2C units joined by C p–Ti d bonds are
connected with each other by Ti d–d bonds between t2g states located at Ti atoms in different
Ti layers.

The C atoms in the C-atom layer (figure 13(c)) are close packed and connected by C p–p
σ -bonds. Their electron density is almost spherical.
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Figure 12. Fd3m-Ti2C: contour lines in the (100) plane of the valence electron density of the
states at �k = # with energy (a) E = 0.186 Ryd, (b) E = 0.3925 Ryd and (c) E = 0.5048 Ryd.
The contour lines of figures 12 and 15 are in units of e Å−3 on a logarithmic mesh starting with a
value of 0.007 81.

More information about the states involved in the different bonding types can again be
obtained by plotting the valence-electron-density contributions in a particular energy range.

Referring to figure 9(b) for the definition of the DOS subpeaks, the valence electron density
of the states in subpeak p1 shows no bonding in the (100) plane. These states of predominantly
C p character form, however, bonds in the C layer (figures 14(a) and (d)).

The C p states in the DOS subpeak p2 are both involved in interlayer p–d bonding with
Ti t2g states (figure 14(b)) and in intralayer C p–p bonding in the (001) plane (figure 14(e)).
The Ti t2g states in this energy range form also interlayer and intralayer Ti d–d bonds but only
with Ti atoms in the same string (figures 14(b) and (f )).

On the other hand, the Ti d states of subpeak d1 interact in order to form both intralayer
Ti d–d bonds in the (001) plane and also interlayer Ti d–d bonds in the (100) plane with Ti
atoms of the adjoining Ti layer belonging to another string (figures 14(c) and (g)). They are
thus responsible for the connection between the strings. The delocalized character of these
bonds stabilizes the d states and lowers their energy more than is the case for the d states in the
d1 peak of Fd3m-Ti2C (compare the DOS plots for the two structures (figures 8(b) and 9(b))).
This could also be a possible explanation for the higher stability of R3̄m-Ti2C compared with
Fd3m-Ti2C.
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Figure 13. The valence electron density of R3̄m-Ti2C: in the (100) plane, calculated (a) without
and (b) with relaxation of the c/a ratio; and for a C layer (c) and a Ti layer (d) in the (001) plane
calculated with the relaxed c/a ratio. The sections in figures 13–15 relate to the hexagonal unit
cell.

(a) (b) (c)

(d) (e) (f) (g)

C

Ti

C C
Ti Ti

C

Ti

C

Ti

Figure 14. R3̄m-Ti2C at the equilibrium geometry: contour plots of the (a) p1, (b) p2 and (c) d1
subband valence electron densities in the (100) plane; of the (d) p1 and (e) p2 subband valence
electron densities for a C layer in the (001) plane; of the (f ) p2 and (g) d1 subband valence electron
densities for a Ti layer in the (001) plane. For the definition of the subbands, see figure 9(b).

Charge-density contours for individual states of R3̄m-Ti2C are plotted in figure 15. The
state at �k = # with energy E = 0.3082 Ryd and thus situated in subband p1 (figure 15(a)) is a
typical C p–p bonding state. The (100) contour plot of the � state at �k = (001/4) in subpeak
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Figure 15. R3̄m-Ti2C at the equilibrium geometry: valence electron density in the (100) plane for
(a) the # state with E = 0.3282 Ryd; (b) the � state with E = 0.5447 Ryd; (c) the # state with
E = 0.6289 Ryd; (d) the � state with E = 0.6534 Ryd.

p2 with energy E = 0.5447 Ryd shows C p–Ti d σ -bonding (figure 15(b)), whereas the #

state with energy E = 0.6289 Ryd in subpeak d1 shows delocalized Ti d–d bonds as well as
some bonding of the Ti eg-like states with C p states (figure 15(c)). This latter bonding type is
not found for the � ‘d band’ state at �k = (00 1

4 ) with energy E = 0.6534 Ryd (figure 15(d)).

6. Conclusions

From the present first-principles band-structure calculations, conclusions can be drawn about
the relative thermodynamic phase stabilities of ordered phases of composition TiC0.5 at 0 K
where no experimental data are available. The thermodynamically stable phase at 0 K for the
ideal composition Ti2C is found to be the trigonal phase with R3̄m symmetry. Its equilibrium
volume and c/a ratio are smaller by 5.7 and 5%, respectively, than the experimental values,
which were, however, determined for TiC0.67 at 1103 K [9]. The volume contraction reduces
its total energy by 2.6 kJ/(mole of atoms) and the reduction of the c/a ratio by a further
1.9 kJ/(mole of atoms). The phase is seen to be stabilized by efficient d–d bonding of Ti atoms
across the empty C sublayers.
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The phase transformation energy defined as the difference of the total energies of R3m-
Ti2C in its equilibrium geometry and cubic, relaxed Fd3m-Ti2C amounts to 11.6 kJ/(mole of
atoms).

The latter phase is stabilized by the relaxation of the Ti atoms from the atomic positions in
the fcc lattice towards their nearest C neighbours. This relaxation brings about a strengthening
of C p–Ti d bonds but also a certain weakening of Ti d–d bonding. The maximum of the
stabilization energy, namely 2.8 kJ/(mole of atoms), is found for the experimental relaxation
value of 0.04 Å.

The present calculation indicates R3̄m-Ti2C to be the phase thermodynamically more
stable than Fd3m-Ti2C if the situation at 0 K is considered for the ideal composition of Ti2C
without any remaining disorder. It cannot give an answer to the question of which phase will
actually be formed under experimental, and thus different, conditions. For this purpose, further
theoretical research concerning the kinetics of phase transformation should be undertaken
which would require, e.g., the calculation of activation barriers for the transformation from
the cubic into the trigonal phase in order to follow the course of the total energies along the
transformation path.

From our calculations, tetragonal ε-Ti2C should be thermodynamically as stable as trigonal
R3̄m-Ti2C at 0 K. As regards the ordered defect structures based on the fcc lattice of B1-TiCx ,
δ′-Ti2C should be more stable than Fd3m-Ti2C. These tetragonal phases cannot be traced
experimentally because they seem to be stable only at low temperatures [2] where their
formation is kinetically hindered and where no experimental phase-diagram data are available.

Fictitious P4/mmm-Ti2C is less stable than relaxed Fd3m-Ti2C and the other calculated
Ti2C phases.

From the calculated formation energies which are in good agreement with experimental
values [41,42] all calculated Ti2C phases are stable against segregation into TiC and metallic Ti.
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[41] Häglund J, Grimvall G, Jarlborg T and Fernández Guillermet A 1991 Phys. Rev. B 43 14 400
[42] Fernández Guillermet A and Grimvall G 1992 J. Phys. Chem. Solids 53 105
[43] Chang R and Graham L J 1996 J. Appl. Phys. 37 3778
[44] Wolf W, Podloucky R, Anstretter T and Fischer F D 1999 Phil. Mag. B 79 839
[45] Marksteiner P, Weinberger P, Neckel A, Zeller R and Dederichs P H 1986 Phys. Rev. B 33 812
[46] Schlapansky F, Herzig P, Eibler R, Hobiger G and Neckel A 1989 Z. Phys. B 75 187


